Answer
$\begin{bmatrix} -2 & 5 & -3\\ 3& 4 & -4\\6&-1&-2 \end{bmatrix} $
Work Step by Step
We can see the number of columns in first matrix is same as number of rows of a second matrix, so their product is possible.
$D= \begin{bmatrix} -2 & 5 & 5\\ 0& 1 & 4\\3&-4&-1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1\\ -1& 0 & 0\\1&1&-1 \end{bmatrix} \\=\begin{bmatrix} -2-5+5 &5 & 2+0-5 \\ 0-1+4& 4 & -4 \\3+4-1 &-1 & -3-0+1 \end{bmatrix}\\=\begin{bmatrix} -2 & 5 & -3\\ 3& 4 & -4\\6&-1&-2 \end{bmatrix} $