Answer
\[{\text{Cramer's rule does not apply}}.\]
Work Step by Step
\[\begin{gathered}
\left\{ {\begin{array}{*{20}{c}}
{1.5x + 3y = 5} \\
{2x + 4y = 3}
\end{array}} \right. \hfill \\
{\text{Given the system}} \hfill \\
\left\{ {\begin{array}{*{20}{c}}
{{a_1}x + {b_1}y = {c_1}} \\
{{a_2}x + {b_2}y = {c_2}}
\end{array}} \right. \hfill \\
D = \left| {\begin{array}{*{20}{c}}
{{a_1}}&{{b_1}} \\
{{a_2}}&{{b_2}}
\end{array}} \right|,\,\,\,{D_x} = \left| {\begin{array}{*{20}{c}}
{{c_1}}&{{b_1}} \\
{{c_2}}&{{b_2}}
\end{array}} \right|,\,\,{D_y} = \left| {\begin{array}{*{20}{c}}
{{a_1}}&{{c_1}} \\
{{a_2}}&{{c_2}}
\end{array}} \right| \hfill \\
{\text{First find }}D,{\text{ If }}D \ne 0,\,{\text{ then find }}{D_x}{\text{ and }}{D_y} \hfill \\
D = \left| {\begin{array}{*{20}{c}}
{1.5}&3 \\
2&4
\end{array}} \right| = 6 - 6 = 0 \hfill \\
{\text{Because }}D = 0,{\text{ Cramer's rule does not apply}}. \hfill \\
\end{gathered} \]