Precalculus (6th Edition)

Published by Pearson
ISBN 10: 013421742X
ISBN 13: 978-0-13421-742-0

Chapter 9 - Systems and Matrices - 9.3 Determinant Solution of Linear Systems - 9.3 Exercises - Page 886: 66

Answer

\[\left\{ {\left( {1,4} \right)} \right\}\]

Work Step by Step

\[\begin{gathered} \left\{ {\begin{array}{*{20}{c}} {4x - y = 0} \\ {2x + 3y = 14} \end{array}} \right. \hfill \\ {\text{Given the system}} \hfill \\ \left\{ {\begin{array}{*{20}{c}} {{a_1}x + {b_1}y = {c_1}} \\ {{a_2}x + {b_2}y = {c_2}} \end{array}} \right. \hfill \\ D = \left| {\begin{array}{*{20}{c}} {{a_1}}&{{b_1}} \\ {{a_2}}&{{b_2}} \end{array}} \right|,\,\,\,{D_x} = \left| {\begin{array}{*{20}{c}} {{c_1}}&{{b_1}} \\ {{c_2}}&{{b_2}} \end{array}} \right|,\,\,{D_y} = \left| {\begin{array}{*{20}{c}} {{a_1}}&{{c_1}} \\ {{a_2}}&{{c_2}} \end{array}} \right| \hfill \\ {\text{First find }}D,{\text{ If }}D \ne 0,\,{\text{ then find }}{D_x}{\text{ and }}{D_y} \hfill \\ D = \left| {\begin{array}{*{20}{c}} 4&{ - 1} \\ 2&3 \end{array}} \right| = 12 + 2 = 14 \hfill \\ {D_x} = \left| {\begin{array}{*{20}{c}} 0&{ - 1} \\ {14}&3 \end{array}} \right| = 0 + 14 = 14 \hfill \\ {D_y} = \left| {\begin{array}{*{20}{c}} 4&0 \\ 2&{14} \end{array}} \right| = 56 \hfill \\ {\text{Using the Cramer's rule}} \hfill \\ x = \frac{{{D_x}}}{D} = \frac{{14}}{{14}} = 1,\,\,\,\,\,\,\,\,\,y = \frac{{{D_y}}}{D} = \frac{{56}}{{14}} = 4 \hfill \\ {\text{The solution set is}} \hfill \\ \left\{ {\left( {1,4} \right)} \right\} \hfill \\ \end{gathered} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.