Precalculus (6th Edition)

Published by Pearson
ISBN 10: 013421742X
ISBN 13: 978-0-13421-742-0

Chapter 9 - Systems and Matrices - 9.3 Determinant Solution of Linear Systems - 9.3 Exercises - Page 885: 36

Answer

$$2 - 4\sqrt {21} $$

Work Step by Step

$$\eqalign{ & \left| {\matrix{ {\sqrt 3 } & 1 & 0 \cr {\sqrt 7 } & 4 & { - 1} \cr 5 & 0 & { - \sqrt 7 } \cr } } \right| \cr & {\rm{Calculating\, the\, determinant \,by \,expanding\, the\, third\, column}} \cr & \left| {\matrix{ {\sqrt 3 } & 1 & 0 \cr {\sqrt 7 } & 4 & { - 1} \cr 5 & 0 & { - \sqrt 7 } \cr } } \right| = 0\left| {\matrix{ {\sqrt 7 } & 4 \cr 5 & 0 \cr } } \right| - \left( { - 1} \right)\left| {\matrix{ {\sqrt 3 } & 1 \cr 5 & 0 \cr } } \right| - \sqrt 7 \left| {\matrix{ {\sqrt 3 } & 1 \cr {\sqrt 7 } & 4 \cr } } \right| \cr & {\rm{Solving}} \cr & \left| {\matrix{ {\sqrt 3 } & 1 & 0 \cr {\sqrt 7 } & 4 & { - 1} \cr 5 & 0 & { - \sqrt 7 } \cr } } \right| = 0 + \left( {0 - 5} \right) - \sqrt 7 \left( {4\sqrt 3 - \sqrt 7 } \right) \cr & {\rm{Simplifying}} \cr & \left| {\matrix{ {\sqrt 3 } & 1 & 0 \cr {\sqrt 7 } & 4 & { - 1} \cr 5 & 0 & { - \sqrt 7 } \cr } } \right| = - 5 - 4\sqrt {21} + 7 \cr & \left| {\matrix{ {\sqrt 3 } & 1 & 0 \cr {\sqrt 7 } & 4 & { - 1} \cr 5 & 0 & { - \sqrt 7 } \cr } } \right| = 2 - 4\sqrt {21} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.