#### Answer

$\color{blue}{s \approx 1.2799}$

#### Work Step by Step

RECALL:
$\cot{\theta}=\dfrac{1}{\tan{\theta}}$ and $\tan{\theta}=\dfrac{1}{\cot{\theta}}$
With $\cot{s}=0.2994$, then
$\tan{s}=\dfrac{1}{0.2994}$
To find $s$, use the inverse tangent function of a calculator in radian mode, then round-off the answer to four decimal places to obtain:
$s=\tan^{-1}{(\frac{1}{0.2994})} \color{blue}{\approx 1.2799}$