Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter P - Section P.6 - Rational Expressions - Exercise Set - Page 85: 74


The factor of the given equation $\frac{\sqrt{x}-\frac{1}{4\sqrt{x}}}{\sqrt{x}}$ is $\frac{4x-1}{4x}$ .

Work Step by Step

Consider the expression: $\frac{\sqrt{x}-\frac{1}{4\sqrt{x}}}{\sqrt{x}}$ Multiply and divide the first term of the numerator $4\sqrt{x}$ $\frac{\sqrt{x}-\frac{1}{4\sqrt{x}}}{\sqrt{x}}=\frac{\frac{\sqrt{x}\times 4\sqrt{x}}{4\sqrt{x}}-\frac{1}{4\sqrt{x}}}{\sqrt{x}}$ Apply the radical rule: $\sqrt{a}\cdot \sqrt{a}=a$ $\frac{\frac{\sqrt{x}\times 4\sqrt{x}}{4\sqrt{x}}-\frac{1}{4\sqrt{x}}}{\sqrt{x}}=\frac{\frac{4x-1}{4\sqrt{x}}}{\sqrt{x}}$ Apply the fraction rule: $\frac{\frac{b}{c}}{a}=\frac{b}{c\cdot a}$ $\frac{4x-1}{4\sqrt{x}\sqrt{x}}$ Apply the radical rule: $\sqrt{a}\cdot \sqrt{a}=a$ $\frac{\frac{4x-1}{4\sqrt{x}}}{\sqrt{x}}=\frac{4x-1}{4x}$ The simplified form of the expression $\frac{\sqrt{x}-\frac{1}{4\sqrt{x}}}{\sqrt{x}}$ is $\frac{4x-1}{4x}$ .
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.