Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 8 - Section 8.1 - Matrix Solutions to Linear Systems - Exercise Set - Page 894: 48

Answer

$15$ desks of first type, $10$ desks of second type and $20$ desks of third type should be produced each week.

Work Step by Step

Let $x$ be the number of desks of the first type, $y$ be the number of desks of the second type and $z$ be the number of desks of the third type. It is provided that the maximum hours for cutting three types of desks should be 100. This implies, $2x+3y+2z=100$ It is provided that the maximum hours for constructing the three types of desks should be 100. This implies, $2x+y+3z=100$ It is provided that the maximum hours for finishing the three types of desks should be 65. This implies, $x+y+2z=65$ Therefore, the system of equations is: $\begin{align} & 2x+3y+2z=100 \\ & 2x+y+3z=100 \\ & x+y+2z=65 \end{align}$ First write the augmented matrix for the given system of equations: The augmented matrix obtained from equations is, $\left[ \begin{matrix} 2 & 3 & 2 & 100 \\ 2 & 1 & 3 & 100 \\ 1 & 1 & 2 & 65 \\ \end{matrix} \right]$ Now, use row operation to reduce the matrix to row echelon form. ${{R}_{1}}\to \frac{1}{2}{{R}_{1}}$, we get $\left[ \begin{matrix} 1 & \frac{3}{2} & 1 & 50 \\ 2 & 1 & 3 & 100 \\ 1 & 1 & 2 & 65 \\ \end{matrix} \right]$ ${{R}_{2}}\to {{R}_{2}}-2{{R}_{1}}$, we get $\left[ \begin{matrix} 1 & \frac{3}{2} & 1 & 50 \\ 0 & -2 & 1 & 0 \\ 1 & 1 & 2 & 65 \\ \end{matrix} \right]$ ${{R}_{3}}\to {{R}_{3}}-{{R}_{1}}$, we get $\left[ \begin{matrix} 1 & \frac{3}{2} & 1 & 50 \\ 0 & -2 & 1 & 0 \\ 0 & \frac{-1}{2} & 1 & 15 \\ \end{matrix} \right]$ ${{R}_{2}}\to \frac{-1}{2}{{R}_{2}}$, we get $\left[ \begin{matrix} 1 & \frac{3}{2} & 1 & 50 \\ 0 & 1 & \frac{-1}{2} & 0 \\ 0 & \frac{-1}{2} & 1 & 15 \\ \end{matrix} \right]$ ${{R}_{3}}\to {{R}_{3}}+\frac{1}{2}{{R}_{2}}$, we get $\left[ \begin{matrix} 1 & \frac{3}{2} & 1 & 50 \\ 0 & 1 & \frac{-1}{2} & 0 \\ 0 & 0 & \frac{3}{4} & 15 \\ \end{matrix} \right]$ ${{R}_{3}}\to \frac{4}{3}{{R}_{3}}$, we get $\left[ \begin{matrix} 1 & \frac{3}{2} & 1 & 50 \\ 0 & 1 & \frac{-1}{2} & 0 \\ 0 & 0 & 1 & 20 \\ \end{matrix} \right]$ ${{R}_{2}}\to {{R}_{2}}+\frac{1}{2}{{R}_{3}}$, we get $\left[ \begin{matrix} 1 & \frac{3}{2} & 1 & 50 \\ 0 & 1 & 0 & 10 \\ 0 & 0 & 1 & 20 \\ \end{matrix} \right]$ ${{R}_{1}}\to {{R}_{1}}-{{R}_{3}}$, we get $\left[ \begin{matrix} 1 & \frac{3}{2} & 0 & 50 \\ 0 & 1 & 0 & 10 \\ 0 & 0 & 1 & 20 \\ \end{matrix} \right]$ ${{R}_{1}}\to {{R}_{1}}-\frac{3}{92}{{R}_{1}}$, we get $\left[ \begin{matrix} 1 & 0 & 0 & 15 \\ 0 & 1 & 0 & 10 \\ 0 & 0 & 1 & 20 \\ \end{matrix} \right]$ Thus, $x=15,y=10,z=20$ Hence, $15$ desks of first type, $10$ desks of second type and $20$ desks of third type should be produced each week.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.