Answer
The graph is symmetric with respect to the polar axis, the line $\theta =\frac{\pi }{2}$, and the pole.
![](https://gradesaver.s3.amazonaws.com/uploads/solution/0ca62e8f-4121-4890-8542-8fdbbb029be9/result_image/1585029609.png?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAJVAXHCSURVZEX5QQ%2F20250113%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20250113T075607Z&X-Amz-Expires=900&X-Amz-SignedHeaders=host&X-Amz-Signature=58172719de3ca8a5ae1db86e0f3e4078ef14e3f6335c6c993cad23b6ff9d4f70)
Work Step by Step
We look for symmetry by making the following substitutions:
(a) $\theta \to - \theta$ :$$r^2=9\cos 2(- \theta ) \quad \Rightarrow \quad r^2=9\cos 2 \theta$$Thus, the graph is symmetric with respect to the polar axis.
(b) $r \to -r, \quad \theta \to -\theta$ :$$(-r)^2 =9\cos 2 (-\theta ) \quad \Rightarrow \quad r^2=9\cos 2 \theta$$Thus, the graph is symmetric with respect to the line $\theta=\frac{\pi}{2}$.
(c) $r \to -r$ :$$(-r)^2 =9\cos 2 \theta \quad \Rightarrow \quad r^2=9\cos 2 \theta$$Thus, the graph is symmetric with respect to the pole.