Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 6 - Section 6.3 - Polar Coordinates - Exercise Set - Page 744: 92


To convert a point from rectangular to polar coordinates or from $\left( x,y \right)$ to $\left( r,\theta \right)$ we will use the formula $r=\sqrt{{{x}^{2}}+{{y}^{2}}}$, for determining the value of r, and $\tan \theta =\frac{y}{x}$, for determining the value of $\theta $.

Work Step by Step

For example, consider a point $\left( 1,\sqrt{3} \right)$. It can be converted into polar coordinates as, $\begin{align} & r=\sqrt{{{1}^{2}}+{{\left( \sqrt{3} \right)}^{2}}} \\ & =\sqrt{1+3} \\ & =\sqrt{4} \\ & =2 \end{align}$ $\begin{align} & \tan \theta =\frac{\sqrt{3}}{1} \\ & \theta ={{\tan }^{-1}}\left( \sqrt{3} \right) \\ & =\frac{\pi }{3} \end{align}$ Hence, the rectangular point $\left( 1,\sqrt{3} \right)$ becomes $\left( 2,\frac{\pi }{3} \right)$ in polar coordinates.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.