Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.4 - Product-to-Sum and Sum-to-Product Formulas - Exercise Set - Page 691: 58

Answer

See the explanation below.

Work Step by Step

Let us consider the right-hand side of the provided expression: $2\sin \frac{\alpha -\beta }{2}\cos \frac{\alpha +\beta }{2}$ One of the product-to-sum formulas is $\sin \alpha \cos \beta =\frac{1}{2}\left[ \sin \left( \alpha +\beta \right)+\sin \left( \alpha -\beta \right) \right]$. Therefore, here $\alpha $ is $\frac{\alpha -\beta }{2}$ and $\beta $ is $\frac{\alpha +\beta }{2}$. Now, the expression can be simplified as shown below: $\begin{align} & 2\sin \frac{\alpha -\beta }{2}\cos \frac{\alpha +\beta }{2}=2\cdot \frac{1}{2}\left[ \sin \left( \frac{\alpha -\beta }{2}+\frac{\alpha +\beta }{2} \right)+\sin \left( \frac{\alpha -\beta }{2}-\frac{\alpha +\beta }{2} \right) \right] \\ & =2\cdot \frac{1}{2}\left[ \sin \left( \frac{\alpha -\beta +\alpha +\beta }{2} \right)+\sin \left( \frac{\alpha -\beta -\alpha -\beta }{2} \right) \right] \\ & =\sin \left( \frac{2\alpha }{2} \right)+\sin \left( \frac{-2\beta }{2} \right) \\ & =\sin \alpha +\sin \left( -\beta \right) \end{align}$ One of the even-odd identities of trigonometry is $\sin \left( -x \right)=-\sin x$. Therefore, applying this identity: $\sin \alpha +\sin \left( -\beta \right)=\sin \alpha -\sin \beta $ Thus, the right-hand side of the expression is equal to the left-hand side: $\sin \alpha -\sin \beta =2\sin \frac{\alpha -\beta }{2}\cos \frac{\alpha +\beta }{2}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.