Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.3 - Double-Angle, Power-Reducing, and Half-Angle Formulas - Exercise Set - Page 682: 91

Answer

Three forms of the double angle formula for $\cos 2\theta $ are: $\underline{\cos 2\theta ={{\cos }^{2}}\theta -{{\sin }^{2}}\theta }$, $\underline{\cos 2\theta =1-2{{\sin }^{2}}\theta }$ and $\cos 2\theta =2{{\cos }^{2}}\theta -1$

Work Step by Step

We know that the double angle formula gives the relationship between angle, $\theta,$ and angle, $2\theta .$ In the case of cosine, the double angle formula can be obtained from the formula for cosine of the sum of angles. The formula for cosine of the sum of angles is: $\cos \left( \alpha +\beta \right)=\cos \alpha \cos \beta -\sin \alpha \sin \beta $ Therefore, $\cos 2\theta =\cos \left( \theta +\theta \right)$ $\cos \left( \theta +\theta \right)$ is similar to $\cos \left( \alpha +\beta \right)$ with $\alpha =\beta =\theta .$ So, $\begin{align} & \cos \left( 2\theta \right)=\cos \left( \theta +\theta \right) \\ & =\cos \theta \cos \theta -\sin \theta \sin \theta \\ & ={{\cos }^{2}}\theta -{{\sin }^{2}}\theta \end{align}$ So $\cos 2\theta ={{\cos }^{2}}\theta -{{\sin }^{2}}\theta .$ Now, from the Pythagorean identity, $\begin{align} & {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 \\ & {{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta \end{align}$ Apply $\left( {{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta \right)$ in $\left( \cos 2\theta ={{\cos }^{2}}\theta -{{\sin }^{2}}\theta \right)$ After that, $\begin{align} & \cos 2\theta ={{\cos }^{2}}\theta -{{\sin }^{2}}\theta \\ & =\left( 1-{{\sin }^{2}}\theta \right)-{{\sin }^{2}}\theta \\ & =1-2{{\sin }^{2}}\theta \end{align}$ So, $\cos 2\theta =1-2{{\sin }^{2}}\theta $ Similarly, $\cos 2\theta ={{\cos }^{2}}\theta -{{\sin }^{2}}\theta .$ Also, from the Pythagorean identity, $\begin{align} & {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 \\ & {{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta \end{align}$ Apply $\left( {{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta \right)$ in $\left( \cos 2\theta ={{\cos }^{2}}\theta -{{\sin }^{2}}\theta \right)$ Then, $\begin{align} & \cos 2\theta ={{\cos }^{2}}\theta -{{\sin }^{2}}\theta \\ & ={{\cos }^{2}}\theta -\left( 1-{{\cos }^{2}}\theta \right) \\ & =-1+2{{\cos }^{2}}\theta \end{align}$ Thus, $\cos 2\theta =2{{\cos }^{2}}\theta -1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.