Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 11 - Section 11.4 - Introduction to Derrivatives - Exercise Set - Page 1175: 39

Answer

a) The average rate of change in the area is $4.1\pi \text{ square inches}$ per inch as radius changes from $2$ to $2.1\text{ inches}$ and $4.01\pi \text{ square inches}$ per inch as radius changes from $2$ to $2.01\text{ inches}$. b) The instantaneous rate of change of the area with respect to the radius is $4\pi \text{ square inches}$ per inch when $x=2\text{ inches}$.

Work Step by Step

(a) Consider that the area of a circle is described by the function $f\left( x \right)=\pi {{x}^{2}}$, radius changes from $\text{2 inches}$ to $2.1\text{ inches}$ Here, as the radius changes from $2$ to $2.1$, this implies $a=2$ and $h=0.1$ Now, compute the average rate of change of the area of a circle by substituting the above values in the difference quotient as follows: $\begin{align} & \frac{f\left( a+h \right)-f\left( a \right)}{h}=\frac{f\left( 2+0.1 \right)-f\left( 2 \right)}{0.1} \\ & =\frac{f\left( 2.1 \right)-f\left( 2 \right)}{0.1} \end{align}$ Now, substitute $x=2.1$ and $x=2$ respectively in the function $f\left( x \right)=\pi {{x}^{2}}$ and simplify. $\begin{align} & \frac{f\left( a+h \right)-f\left( a \right)}{h}=\frac{\pi {{\left( 2.1 \right)}^{2}}-\pi {{\left( 2 \right)}^{2}}}{0.1} \\ & =\frac{4.41\pi -4\pi }{0.1} \\ & =4.1\pi \end{align}$ Thus, the average rate of change in the area is $4.1\pi $ square inches per inch as the radius changes from $2$ to $2.1\text{ inches}$. Now, consider that the radius changes from $2\text{ inches}$ to $2.01\text{ inches}$. Here, as radius changes from $2$ to $2.01$, this implies $a=2$ and $h=0.01$ Now, compute the average rate of change of the area of a circle by substituting the above values in the difference quotient as follows: $\begin{align} & \frac{f\left( a+h \right)-f\left( a \right)}{h}=\frac{f\left( 2+0.01 \right)-f\left( 2 \right)}{0.01} \\ & =\frac{f\left( 2.01 \right)-f\left( 2 \right)}{0.01} \end{align}$ Now, substitute $x=2.01$ and $x=2$ respectively in the function $f\left( x \right)=\pi {{x}^{2}}$ and simplify. $\begin{align} & \frac{f\left( a+h \right)-f\left( a \right)}{h}=\frac{\pi {{\left( 2.01 \right)}^{2}}-\pi {{\left( 2 \right)}^{2}}}{0.01} \\ & =\frac{4.0401\pi -4\pi }{0.01} \\ & =4.01\pi \end{align}$ Thus, the average rate of change in the area is $4.01\pi $ square inches per inch as the radius changes from $2$ to $2.01\text{ inches}$. (b) Consider that the area of a circle is described by the function $f\left( x \right)=\pi {{x}^{2}}$ Compute the derivative of $f\left( x \right)=\pi {{x}^{2}}$ using the formula $f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\frac{f\left( x+h \right)-f\left( x \right)}{h}$ as follows: To compute $f\left( x+h \right)$, substitute $x=x+h$ in the function $f\left( x \right)={{x}^{2}}$. $\begin{align} & f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\frac{f\left( x+h \right)-f\left( x \right)}{h} \\ & =\underset{h\to 0}{\mathop{\lim }}\,\frac{\pi {{\left( x+h \right)}^{2}}-\pi {{x}^{2}}}{h} \end{align}$ Now, simplify $\pi {{\left( x+h \right)}^{2}}$ by using the property ${{\left( A+B \right)}^{2}}={{A}^{2}}+2AB+{{B}^{2}}$ $\begin{align} & f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\frac{\pi \left( {{x}^{2}}+2xh+{{h}^{2}} \right)-\pi {{x}^{2}}}{h} \\ & =\underset{h\to 0}{\mathop{\lim }}\,\frac{\pi {{x}^{2}}+2\pi xh+\pi {{h}^{2}}-\pi {{x}^{2}}}{h} \\ \end{align}$ Combine the like terms in the numerator, then divide the numerator and denominator by h; this gives, $f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\left( 2\pi x+\pi h \right)$ Apply the limits, $\begin{align} & f'\left( x \right)=2\pi x+\pi \cdot 0 \\ & =2\pi x \end{align}$ Now, substitute $x=2$ in $f'\left( x \right)$ to compute the instantaneous change of “f” at $2$. $\begin{align} & f'\left( 2 \right)=2\pi \cdot 2 \\ & =4\pi \end{align}$ Thus, the instantaneous rate of change of the area with respect to the radius is $4\pi \text{ square inches}$ per inch when $x=2\text{ inches}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.