Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 11 - Section 11.3 - Limits and Continuity - Exercise Set - Page 1160: 4


Yes, the function $ f\left( x \right)={{x}^{2}}-5x+6$ is continuous at $4$.

Work Step by Step

Consider the function $ f\left( x \right)={{x}^{2}}-5x+6$, First check whether the function is defined at the point $ a $ or not. Find the value of $ f\left( x \right)$ at $ a=4$, $\begin{align} & f\left( 4 \right)={{\left( 4 \right)}^{2}}-5\left( 4 \right)+6 \\ & =16-20+6 \\ & =2 \end{align}$ The function is defined at the point $ a=4$. Now find the value of $\,\underset{x\to 4}{\mathop{\lim }}\,{{x}^{2}}-5x+6$, $\begin{align} & \,\underset{x\to 4}{\mathop{\lim }}\,f\left( x \right)=\,\,\underset{x\to 4}{\mathop{\lim }}\,\left( {{x}^{2}}-5x+6 \right) \\ & ={{\left( 4 \right)}^{2}}-5\left( 4 \right)+6 \\ & =16-20+6 \\ & =2 \end{align}$ Thus, $\,\underset{x\to 4}{\mathop{\lim }}\,\left( {{x}^{2}}-5x+6 \right)=2$ Now check whether $\,\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)=f\left( a \right)$ or not. From the above, $\,\underset{x\to 4}{\mathop{\lim }}\,\left( {{x}^{2}}-5x+6 \right)=2\text{ and }f\left( 4 \right)=2$ Therefore, $\,\underset{x\to 4}{\mathop{\lim }}\,f\left( x \right)=f\left( 4 \right)$ Thus, the function satisfies all the properties of being continuous. Hence, the function $ f\left( x \right)={{x}^{2}}-5x+6$ is continuous at $4$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.