Answer
a) The limit $\underset{x\to {{3}^{-}}}{\mathop{\lim }}\,f\left( x \right)$ is equal to $6$.
b) The limit $\underset{x\to {{3}^{+}}}{\mathop{\lim }}\,f\left( x \right)$ is equal to $6$.
c) The limit $\underset{x\to 3}{\mathop{\lim }}\,f\left( x \right)$ is 6.
Work Step by Step
(a)
Consider the provided limit,
$\underset{x\to {{3}^{-}}}{\mathop{\lim }}\,f\left( x \right)$
This means that it is required to calculate the value of $ f\left( x \right)$ when $ x $ is close to 3 but less than 3.
Because $ x $ is less than 3, using the first line of the piecewise defined function's equation
$ f\left( x \right)=\frac{{{x}^{2}}-9}{x-3}\ \text{if }\ x\ne 3$
Use ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ to solve the limit to get the result
$\begin{align}
& \underset{x\to {{3}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{3}^{-}}}{\mathop{\lim }}\,\frac{{{x}^{2}}-9}{x-3} \\
& =\underset{x\to {{3}^{-}}}{\mathop{\lim }}\,\frac{\left( x-3 \right)\left( x+3 \right)}{x-3}
\end{align}$
Cancel out $ x-3$ from both the numerator and denominator.
$\begin{align}
& \underset{x\to {{3}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{3}^{-}}}{\mathop{\lim }}\,\frac{\left( x-3 \right)\left( x+3 \right)}{\left( x-3 \right)} \\
& =\underset{x\to {{3}^{-}}}{\mathop{\lim }}\,\left( x+3 \right)
\end{align}$
Now use limit property $\underset{x\to a}{\mathop{\lim }}\,\left( f\left( x \right)+g\left( x \right) \right)=\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)+\underset{x\to a}{\mathop{\lim }}\,g\left( x \right)$
$\begin{align}
& \underset{x\to {{3}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{3}^{-}}}{\mathop{\lim }}\,\left( x+3 \right) \\
& =\underset{x\to {{3}^{-}}}{\mathop{\lim }}\,x+\underset{x\to {{3}^{-}}}{\mathop{\lim }}\,3
\end{align}$
Use $\underset{x\to a}{\mathop{\lim }}\,c=c\text{, where }c=\text{constant}$
$\begin{align}
& \underset{x\to {{3}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{3}^{-}}}{\mathop{\lim }}\,x+\underset{x\to {{3}^{-}}}{\mathop{\lim }}\,3 \\
& =3+3 \\
& =6
\end{align}$
Thus, the limit $\underset{x\to {{3}^{-}}}{\mathop{\lim }}\,f\left( x \right)$ is equal to $6$.
(b)
Consider the provided limit,
$\underset{x\to {{3}^{+}}}{\mathop{\lim }}\,f\left( x \right)$
This means that it is required to calculate the value of $ f\left( x \right)$ when $ x $ is close to 3 but not equal to 3.
Since, $ x $ not equal to 3, using the first line of the piecewise defined function's equation
$ f\left( x \right)=\frac{{{x}^{2}}-9}{x-3}\ \ \text{if }\ x\ne 3$
Now use ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ to solve the limit to get the result
$\begin{align}
& \underset{x\to {{3}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{3}^{+}}}{\mathop{\lim }}\,\frac{{{x}^{2}}-9}{x-3} \\
& =\underset{x\to {{3}^{+}}}{\mathop{\lim }}\,\frac{\left( x-3 \right)\left( x+3 \right)}{x-3}
\end{align}$
Cancel out $ x-3$ from both the numerator and denominator.
$\begin{align}
& \underset{x\to {{3}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{3}^{+}}}{\mathop{\lim }}\,\frac{\left( x-3 \right)\left( x+3 \right)}{\left( x-3 \right)} \\
& =\underset{x\to {{3}^{+}}}{\mathop{\lim }}\,\left( x+3 \right)
\end{align}$
Use limit property $\underset{x\to a}{\mathop{\lim }}\,\left( f\left( x \right)+g\left( x \right) \right)=\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)+\underset{x\to a}{\mathop{\lim }}\,g\left( x \right)$
$\begin{align}
& \underset{x\to {{3}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{3}^{+}}}{\mathop{\lim }}\,\left( x+3 \right) \\
& =\underset{x\to {{3}^{+}}}{\mathop{\lim }}\,x+\underset{x\to {{3}^{+}}}{\mathop{\lim }}\,3
\end{align}$
Use property $\underset{x\to a}{\mathop{\lim }}\,c=c\text{, where }c=\text{constant}$
$\begin{align}
& \underset{x\to {{3}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{3}^{+}}}{\mathop{\lim }}\,x+\underset{x\to {{3}^{+}}}{\mathop{\lim }}\,3 \\
& =3+3 \\
& =6
\end{align}$
Thus, the limit $\underset{x\to {{3}^{+}}}{\mathop{\lim }}\,f\left( x \right)$ is equal to $6$.
(c)
Consider the provided limit,
$\underset{x\to 3}{\mathop{\lim }}\,f\left( x \right)$
From part (a) $\underset{x\to {{3}^{-}}}{\mathop{\lim }}\,f\left( x \right)=6$
From part (b) $\underset{x\to {{3}^{+}}}{\mathop{\lim }}\,f\left( x \right)=6$
As $\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,f\left( x \right)$
Thus, the limit $\underset{x\to 3}{\mathop{\lim }}\,f\left( x \right)$ is 6.