Answer
See below:
Work Step by Step
Consider the provided limit notation, $\underset{x\to 2}{\mathop{\lim }}\,\left( {{x}^{2}}-1 \right)$ .
In making the table, choose the value of x close to 2 from the left and from the right as x approaches 2.
As x approaches 2 from the left, arbitrarily start with $ x=1.99$.
Then select two additional values of x that are closer to 2, but still less than 2; we choose 1.999 and 1.9999.
Evaluate f at each chosen value of x to obtain the corresponding values of $ f\left( x \right)$.
At $ x=1.99$,
Substitute, $ x=1.99$ in the provided limit notation, $\underset{x\to 2}{\mathop{\lim }}\,\left( {{x}^{2}}-1 \right)$.
Therefore,
$\begin{align}
& \underset{x\to 1.99}{\mathop{\lim }}\,\left( {{x}^{2}}-1 \right)=\left( {{\left( 1.99 \right)}^{2}}-1 \right) \\
& =\left( 3.9601-1 \right) \\
& =2.9601
\end{align}$
Now, at $ x=1.999$
Substitute, $ x=1.999$ in the provided limit notation, $\underset{x\to 2}{\mathop{\lim }}\,\left( {{x}^{2}}-1 \right)$.
$\begin{align}
& \underset{x\to 1.999}{\mathop{\lim }}\,\left( {{x}^{2}}-1 \right)=\left( {{\left( 1.999 \right)}^{2}}-1 \right) \\
& =\left( 3.9960-1 \right) \\
& =2.9960
\end{align}$
At $ x=1.9999$
Substitute, $ x=1.9999$ in the provided limit notation, $\underset{x\to 2}{\mathop{\lim }}\,\left( {{x}^{2}}-1 \right)$.
$\begin{align}
& \underset{x\to 1.9999}{\mathop{\lim }}\,\left( {{x}^{2}}-1 \right)=\left( {{\left( 1.9999 \right)}^{2}}-1 \right) \\
& =\left( 3.9996-1 \right) \\
& =2.9996
\end{align}$
Now, as x approaches 2 from the right, arbitrarily start with $ x=2.01$.
Then select two additional values of x that are closer to 2, but still greater than 2; we choose 2.001 and 2.0001.
At $ x=2.01$
Substitute, $ x=2.01$ in the provided limit notation, $\underset{x\to 2}{\mathop{\lim }}\,\left( {{x}^{2}}-1 \right)$
$\begin{align}
& \underset{x\to 2.01}{\mathop{\lim }}\,\left( {{x}^{2}}-1 \right)=\left( {{\left( 2.01 \right)}^{2}}-1 \right) \\
& =\left( 4.0401-1 \right) \\
& =3.0401
\end{align}$
Now, at $ x=2.001$
Substitute, $ x=2.001$ in the provided limit notation, $\underset{x\to 2}{\mathop{\lim }}\,\left( {{x}^{2}}-1 \right)$
Therefore,
$\begin{align}
& \underset{x\to 2.001}{\mathop{\lim }}\,\left( {{x}^{2}}-1 \right)=\left( {{\left( 2.001 \right)}^{2}}-1 \right) \\
& =\left( 4.0040-1 \right) \\
& =3.0040
\end{align}$
At $ x=2.0001$
Substitute, $ x=2.0001$ in the provided limit notation, $\underset{x\to 2}{\mathop{\lim }}\,\left( {{x}^{2}}-1 \right)$
$\begin{align}
& \underset{x\to 2.0001}{\mathop{\lim }}\,\left( {{x}^{2}}-1 \right)=\left( {{\left( 2.0001 \right)}^{2}}-1 \right) \\
& =\left( 4.0004-1 \right) \\
& =3.0004
\end{align}$
The limit of $\left( {{x}^{2}}-1 \right)$ as x approaches 2 equals the number 3.