#### Answer

The complete statement is, βThe notation $\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)=L $ is read as: the limit of $ f\left( x \right)$ as x approaches a is equal to the number L.β

#### Work Step by Step

Consider the provided limit notation, $\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)=L $
Here, $ f $ is any function defined on some open interval containing the number $ a $.
The function f may or may not be defined at a.
The limit notation $\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)=L $ means that as x gets closer to $ a $, but remains unequal to $ a $, then the corresponding value of $ f\left( x \right)$ gets closer to the number L.