Answer
One have to use ${{S}_{k}}$ to prove ${{S}_{k+1}}$ is also true. If one is able to prove ${{S}_{k+1}}$ then by the principle of mathematical induction the statement ${{S}_{n}}$ is true for all positive integers $ n $.
Work Step by Step
We know that the mathematical induction comprises of two steps to prove a statement.
Let ${{S}_{n}}$ be a statement involving the positive integer n. If
1. ${{S}_{1}}$ is true, and
2. Let us assume that the ${{S}_{k}}$ be true for some integer $ k $.
Then, one has to use ${{S}_{k}}$ to prove ${{S}_{k+1}}$ is also true. If one is able to prove ${{S}_{k+1}}$ then by the principle of mathematical induction the statement ${{S}_{n}}$ is true for all positive integers $ n $.