Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 1 - Section 1.8 - Inverse Functions - Exercise Set - Page 269: 26

Answer

a) ${{f}^{-1}}\left( x \right)=\frac{6x+5}{x-1}$ , $x\ne 1$. b) they are inverses

Work Step by Step

(a) Consider the function: $f\left( x \right)=\frac{x+5}{x-6}$ Follow the procedure to determine the inverse ${{f}^{-1}}\left( x \right)$ of the function $f\left( x \right)=\frac{x+5}{x-6}$. Step 1: Replace the function $f\left( x \right)$ with y in the equation of $f\left( x \right)$. $y=\frac{x+5}{x-6}$ Step 2: Interchange the variables x and y. $x=\frac{y+5}{y-6}$ Step 3: Solve the equation for y. The variable y has to be isolated. Multiply by $\left( y-6 \right)$ on both sides of the equation to clear fractions. So, the equation becomes, $x\left( y-6 \right)=\left( \frac{y+5}{y-6} \right)\left( y-6 \right)$ Simplify the equation. So, $x\left( y-6 \right)=y+5$ Use the distributive property $a\left( b+c \right)=ab+ac$ to remove parentheses. $xy-6x=y+5$ Subtract $y$ and add $6x$ to both the sides of the equation. $\begin{align} & xy-6x-y+6x=y+5-y+6x \\ & xy-y=6x+5 \end{align}$ Factor out $y$ from the left-hand side of the equation to isolate $y$. $y\left( x-1 \right)=6x+5$ Divide by $\left( x-1 \right)$ on both the sides of the equation for $x\ne 1$. $\begin{align} & \frac{y\left( x-1 \right)}{\left( x-1 \right)}=\frac{6x+5}{\left( x-1 \right)} \\ & y=\frac{6x+5}{x-1} \end{align}$ Because the obtained equation defines y as a function of x for $x\ne 1$ , the inverse function exists for the function f. Step 4: Replace y by ${{f}^{-1}}\left( x \right)$ in the equation obtained in step 3. Thus, the inverse function${{f}^{-1}}\left( x \right)$ is obtained as, ${{f}^{-1}}\left( x \right)=\frac{6x+5}{x-1}$ Therefore, the inverse function is ${{f}^{-1}}\left( x \right)=\frac{6x+5}{x-1}$ ,$x\ne 1$. (b) Consider the function: $f\left( x \right)=\frac{x+5}{x-6}$. The inverse of the function is obtained as ${{f}^{-1}}\left( x \right)=\frac{6x+5}{x-1}$ in part (a). The inverse of an equation can be verified by showing that $f\left( {{f}^{-1}}\left( x \right) \right)=x\text{ and }{{f}^{-1}}\left( f\left( x \right) \right)=x\text{ }$. First calculate $f\left( {{f}^{-1}}\left( x \right) \right)$. Replace ${{f}^{-1}}\left( x \right)=\frac{6x+5}{x-1}$ and evaluate the function f. $\begin{align} & f\left( {{f}^{-1}}\left( x \right) \right)=f\left( \frac{6x+5}{x-1} \right) \\ & =\frac{\frac{6x+5}{x-1}+5}{\frac{6x+5}{x-1}-6} \end{align}$ Take the least common denominator as $x-1$ in both numerator and denominator. So, $\begin{align} & f\left( {{f}^{-1}}\left( x \right) \right)=\frac{\frac{6x+5+5\left( x-1 \right)}{x-1}}{\frac{6x+5-6\left( x-1 \right)}{x-1}} \\ & =\frac{6x+5+5\left( x-1 \right)}{6x+5-6\left( x-1 \right)} \end{align}$ Use the distributive property $a\left( b+c \right)=ab+ac$ and combine like terms. $\begin{align} & f\left( {{f}^{-1}}\left( x \right) \right)=\frac{6x+5+5x-5}{6x+5-6x+6} \\ & =\frac{11x}{11} \\ & =x \end{align}$ Now, calculate ${{f}^{-1}}\left( f\left( x \right) \right)$. Replace $f\left( x \right)=\frac{x+5}{x-6}$ and evaluate the inverse function ${{f}^{-1}}$. $\begin{align} & {{f}^{-1}}\left( f\left( x \right) \right)={{f}^{-1}}\left( \frac{x+5}{x-6} \right) \\ & =\frac{6\left( \frac{x+5}{x-6} \right)+5}{\left( \frac{x+5}{x-6} \right)-1} \end{align}$ Take the least common denominator as $x-6$ in both numerator and denominator. So, $\begin{align} & f\left( {{f}^{-1}}\left( x \right) \right)=\frac{\frac{6\left( x+5 \right)+5\left( x-6 \right)}{x-6}}{\frac{x+5-1\left( x-6 \right)}{x-6}} \\ & =\frac{6\left( x+5 \right)+5\left( x-6 \right)}{x+5-1\left( x-6 \right)} \end{align}$ Use the distributive property $a\left( b+c \right)=ab+ac$ and combine like terms. $\begin{align} & f\left( {{f}^{-1}}\left( x \right) \right)=\frac{6x+30+5x-30}{x+5-x+6} \\ & =\frac{11x}{11} \\ & =x \end{align}$ Thus, it verifies that $f\left( {{f}^{-1}}\left( x \right) \right)=x\text{ and }{{f}^{-1}}\left( f\left( x \right) \right)=x\text{ }$. Therefore, the obtained inverse function ${{f}^{-1}}\left( x \right)=\frac{6x+5}{x-1}$ ,$x\ne 1$ is correct. Hence, the functions $f$ and ${{f}^{-1}}$ are inverses of each other.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.