Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 9 - Polar Coordinates; Vectors - 9.7 The Cross Product - 9.7 Assess Your Understanding - Page 632: 41

Answer

$-9i-7j-3k.$

Work Step by Step

We know that a vector will be orthogonal to two vectors if and only if it is their cross-product (multiplied by any constant). We know that for a matrix \[ \left[\begin{array}{rrr} a & b & c \\ d &e & f \\ g &h & i \\ \end{array} \right] \] the determinant, $D=a(ei-fh)-b(di-fg)+c(dh-eg).$ We know that if we have two vectors $v=ai+bj+ck$ and $w=di+ej+fk$, then $v\times w$ can be obtained by the determinant of: \[ \left[\begin{array}{rrr} i & j & k \\ a &b & c \\ d &e & f \\ \end{array} \right] \] Hence here $D=u\times v=i((-3)\cdot2-1\cdot3)-j(2\cdot2-1\cdot(-3))+k(2\cdot3-(-3)\cdot(-3))=-9i-7j-3k.$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.