Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 9 - Polar Coordinates; Vectors - 9.7 The Cross Product - 9.7 Assess Your Understanding - Page 631: 22


$v\times w=6i+4j+6k.$ $w\times v=-6i-4j-6k.$ $w\times w=v\times v=0.$

Work Step by Step

We know that for a matrix \[ \left[\begin{array}{rrr} a & b & c \\ d &e & f \\ g &h & i \\ \end{array} \right] \] the determinant, $D=a(ei-fh)-b(di-fg)+c(dh-eg).$ We know that if we have two vectors $v=ai+bj+ck$ and $w=di+ej+fk$, then $v\times w$ can be obtained by the determinant of: \[ \left[\begin{array}{rrr} i & j & k \\ a &b & c \\ d &e & f \\ \end{array} \right] \] Hence here $D=v\times w=i((-3)\cdot(-2)-0\cdot3)-j(2\cdot(-2)-0\cdot0)+k(2\cdot3-(-3)\cdot0)=6i+4j+6k.$ We know that $w\times v=-v\times w=-(6i+4j+6k)=-6i-4j-6k.$ We also know that $w\times w=v\times v=0.$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.