Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 7 - Analytic Trigonometry - 7.5 Sum and Difference Formulas - 7.5 Assess Your Understanding - Page 489: 93

Answer

$\frac{\pi}{2}, \frac{7\pi}{6}$

Work Step by Step

Step 1. Rewrite the equation as $\frac{1}{2}sin\theta-\frac{\sqrt 3}{2}cos\theta=\frac{1}{2}\longrightarrow cos(\frac{\pi}{3})sin\theta-sin(\frac{\pi}{3})cos\theta=\frac{1}{2}\longrightarrow sin(\theta-\frac{\pi}{3})=\frac{1}{2}$ Step 2. Solve the equation above to get $\theta-\frac{\pi}{3}=2k\pi+\frac{\pi}{6}$ and $\theta-\frac{\pi}{3}=2k\pi+\frac{5\pi}{6}$. Thus $\theta=2k\pi+\frac{\pi}{2}$ and $\theta=2k\pi+\frac{7\pi}{6}$ Step 3. Within $[0,2\pi)$, we have $\theta=\frac{\pi}{2}, \frac{7\pi}{6}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.