Functions Modeling Change: A Preparation for Calculus, 5th Edition

Published by Wiley
ISBN 10: 1118583191
ISBN 13: 978-1-11858-319-7

Chapter 4 - Exponential Functions - Review Exercises and Problems for Chapter Four - Page 180: 64

Answer

$ p(t)=1149.61\left( 0.93504\right)^x $

Work Step by Step

We want to find $p(t)=ab^x$, given $p(20)=300$ and $p(50)=40$. We now find $b$ and $a$. $$ a b^{20}=300 \quad \text { and } \quad a b^{50}=40 $$ $$ \begin{aligned} &\frac{a b^{50}}{a b^{20}}=\frac{40}{300}\\ &\begin{aligned} b^{30} & =\frac{4}{30} \\ b & =\left(\frac{4}{30}\right)^{\frac{1}{30}}\approx 0.93504 \end{aligned} \end{aligned} $$ and $$ \begin{aligned} a b^{50} & =40 \\ a & =\frac{40}{b^{50}}\approx 1149.61 \end{aligned} $$ Hence $$ p(t)=1149.61\left( 0.93504\right)^x $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.