Functions Modeling Change: A Preparation for Calculus, 5th Edition

Published by Wiley
ISBN 10: 1118583191
ISBN 13: 978-1-11858-319-7

Chapter 2 - Functions - 2.1 Input and Output - Exercises and Problems for Section 2.1 - Exercises and Problems - Page 75: 20

Answer

$f\left(\frac{1}{3}\right)\approx 3.222$ $\frac{f(1)}{f(3)}\approx 0.238$ $f\left(\frac{1}{3}\right) \neq \frac{f(1)}{f(3)} $

Work Step by Step

Substituting $\frac{1}{3}, 1, 3$ for $x$ gives $$ f\left(\frac{1}{3}\right)=3+2\left(\frac{1}{3}\right)^2=3+\frac{2}{9}\approx 3.222 $$ $$ \begin{aligned} & f(1)=3+2(1)^2=5 \\ & f(3)=3+2(3)^2=21 \end{aligned} $$ So $\frac{f(1)}{f(3)}=\frac{5}{21}\approx0.238$, therefore $$ f\left(\frac{1}{3}\right) \neq \frac{f(1)}{f(3)} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.