Answer
$f\left(\frac{1}{3}\right)\approx 3.222$
$\frac{f(1)}{f(3)}\approx 0.238$
$f\left(\frac{1}{3}\right) \neq \frac{f(1)}{f(3)} $
Work Step by Step
Substituting $\frac{1}{3}, 1, 3$ for $x$ gives
$$
f\left(\frac{1}{3}\right)=3+2\left(\frac{1}{3}\right)^2=3+\frac{2}{9}\approx 3.222
$$
$$
\begin{aligned}
& f(1)=3+2(1)^2=5 \\
& f(3)=3+2(3)^2=21
\end{aligned}
$$
So $\frac{f(1)}{f(3)}=\frac{5}{21}\approx0.238$, therefore
$$
f\left(\frac{1}{3}\right) \neq \frac{f(1)}{f(3)}
$$