## Thinking Mathematically (6th Edition)

We can find the total number of patients. total patients = 453 + 650 + 547 + 350 total patients = 2000 We can find the standard divisor. $standard~divisor = \frac{total ~patients}{number~of~ nurses}$ $standard~divisor = \frac{2000}{250}$ $standard~divisor = 8$ We can find each shift's standard quota. The standard quota of each shift is the number of patients during the shift divided by the standard divisor. Shift A: $standard ~quota = \frac{patients}{standard~divisor}$ $standard~quota = \frac{453}{8}$ $standard~quota = 56.63$ Shift B: $standard ~quota = \frac{patients}{standard~divisor}$ $standard~quota = \frac{650}{8}$ $standard~quota = 81.25$ Shift C: $standard ~quota = \frac{patients}{standard~divisor}$ $standard~quota = \frac{547}{8}$ $standard~quota = 68.38$ Shift D: $standard ~quota = \frac{patients}{standard~divisor}$ $standard~quota = \frac{350}{8}$ $standard~quota = 43.75$ If each shift is apportioned its lower quota, the number of nurses apportioned is 56 + 81 + 68 + 43 which is 248 nurses. Since there is a total of 250 nurses available, there are two surplus nurses. To obtain a sum of 250 nurses, we need to find a modified divisor that is slightly less than the standard divisor. Let's choose a modified divisor of 7.94. Note that it may require a bit of trial-and-error to find a modified divisor that works. We can find the modified quota for each shift. Shift A: $modified ~quota = \frac{patients}{modified~divisor}$ $modified ~quota = \frac{453}{7.94}$ $modified ~quota = 57.05$ Shift B: $modified ~quota = \frac{patients}{modified ~divisor}$ $modified ~quota = \frac{650}{7.94}$ $modified ~quota = 81.86$ Shift C: $modified ~quota = \frac{patients}{modified ~divisor}$ $modified ~quota = \frac{547}{7.94}$ $modified ~quota = 68.89$ Shift D: $modified ~quota = \frac{patients}{modified ~divisor}$ $modified ~quota = \frac{350}{7.94}$ $modified ~quota = 44.08$ Using Jefferson's method, each shift is apportioned the lower quota of the modified quota. Each shift is apportioned the following number of nurses: Shift A is apportioned 57 nurses. Shift B is apportioned 81 nurses. Shift C is apportioned 68 nurses. Shift D is apportioned 44 nurses. Note that the total number of nurses apportioned is 250, so using a modified divisor of 7.94 is acceptable.