#### Answer

$\frac{11}{26}$

#### Work Step by Step

If A and B are not mutually exclusive events, then
P(A or B) = P(A)+P(B) - P(A and B)
If you are dealt one card from a standard deck, find the probability that you are dealt a heart or a picture card.
P(Heart) = $\frac{13}{52}$
P(picture)= $\frac{12}{52}$
P(Heart and picture) = $\frac{3}{52}$ (There are 3 heart picture cards)
P(Heart or Picture) = P(Heart) +P(picture) - P(heart and picture)
=$\frac{13}{52}$ + $\frac{12}{52}$ - $\frac{3}{52}$
=$\frac{13+12 -3}{52}$ = $\frac{22}{52}$ = $\frac{11}{26}$