Answer
See explanation
Work Step by Step
We are asked to justify the steps in the Boolean algebra proof of:
\[
\textbf{3. For all } a, b \in B,\quad (a + b) \cdot a = a
\]
---
### ✅ Proof Breakdown:
\[
\begin{align*}
(a + b) \cdot a &= a \cdot (a + b) \quad \text{(a)} \\
&= a \cdot a + a \cdot b \quad \text{(b)} \\
&= a + a \cdot b \quad \text{(c)} \\
&= a \cdot 1 + a \cdot b \quad \text{(d)} \\
&= a \cdot (1 + b) \quad \text{(e)} \\
&= a \cdot 1 \quad \text{(f)} \\
&= a \quad \text{(g)}
\end{align*}
\]
---
### ✅ Fill in Reasons:
- **(a)**: **Commutative Law** of multiplication (\(x \cdot y = y \cdot x\)) — Theorem 6.2.2 (1b)
- **(b)**: **Distributive Law** — Theorem 6.2.2 (3a)
- **(c)**: **Idempotent Law** — Theorem 6.4.1 (4a): \(a \cdot a = a\)
- **(d)**: **Identity Law** for multiplication — Theorem 6.4.1 (5a): \(a = a \cdot 1\)
- **(e)**: **Distributive Law** (in reverse): factoring \(a\) — Theorem 6.2.2 (3a)
- **(f)**: **Universal Bound Law** — Theorem 6.4.1 (5a): \(1 + b = 1\)
- **(g)**: **Identity Law** — Theorem 6.4.1 (5a): \(a \cdot 1 = a\)
---
### ✅ Final Boxed Justification:
\[
\boxed{
\begin{aligned}
\text{(a)} &\ \text{Commutative Law of } \cdot \\
\text{(b)} &\ \text{Distributive Law} \\
\text{(c)} &\ \text{Idempotent Law: } a \cdot a = a \\
\text{(d)} &\ \text{Identity Law: } a = a \cdot 1 \\
\text{(e)} &\ \text{Distributive Law (factoring)} \\
\text{(f)} &\ \text{Universal Bound Law: } 1 + b = 1 \\
\text{(g)} &\ \text{Identity Law: } a \cdot 1 = a
\end{aligned}
}
\]