Discrete Mathematics with Applications 4th Edition

Published by Cengage Learning
ISBN 10: 0-49539-132-8
ISBN 13: 978-0-49539-132-6

Chapter 5 - Sequences, Mathematical Induction, and Recursion - Exercise Set 5.6 - Page 303: 33

Answer

See explanation

Work Step by Step

Below is a straightforward algebraic verification that the closed‐form (Binet’s formula) for the Fibonacci sequence satisfies the Fibonacci recurrence. Let \[ F_n \;=\; \frac{1}{\sqrt{5}} \Bigl[\Bigl(\tfrac{1+\sqrt{5}}{2}\Bigr)^{n+1} -\Bigl(\tfrac{1-\sqrt{5}}{2}\Bigr)^{n+1}\Bigr]. \] We want to show that this sequence \(F_0, F_1, F_2, \dots\) (as defined by the above expression for each \(n \ge 0\)) satisfies \[ F_k = F_{k-1} + F_{k-2} \quad\text{for all integers } k \ge 2. \] --- ## Step‐by‐Step Verification Define \[ \alpha = \frac{1 + \sqrt{5}}{2}, \quad \beta = \frac{1 - \sqrt{5}}{2}. \] Note that both \(\alpha\) and \(\beta\) satisfy the quadratic equation \[ x^2 = x + 1, \] which implies \[ \alpha^2 = \alpha + 1, \quad \beta^2 = \beta + 1. \] Hence, the closed‐form formula can be written as \[ F_n \;=\; \frac{\alpha^{\,n+1} - \beta^{\,n+1}}{\sqrt{5}}. \] ### 1. Write Out \(F_k\), \(F_{k-1}\), \(F_{k-2}\) - \(\displaystyle F_k = \frac{\alpha^{k+1} - \beta^{k+1}}{\sqrt{5}},\) - \(\displaystyle F_{k-1} = \frac{\alpha^k - \beta^k}{\sqrt{5}},\) - \(\displaystyle F_{k-2} = \frac{\alpha^{k-1} - \beta^{k-1}}{\sqrt{5}}. \) ### 2. Check the Recurrence Compute \(F_{k-1} + F_{k-2}\): \[ F_{k-1} + F_{k-2} \;=\; \frac{\alpha^k - \beta^k}{\sqrt{5}} \;+\; \frac{\alpha^{k-1} - \beta^{k-1}}{\sqrt{5}} \;=\; \frac{1}{\sqrt{5}}\Bigl[\alpha^k + \alpha^{k-1} - \beta^k - \beta^{k-1}\Bigr]. \] Group the \(\alpha\)‐terms and the \(\beta\)‐terms: \[ =\; \frac{1}{\sqrt{5}}\Bigl[(\alpha^k + \alpha^{k-1}) - (\beta^k + \beta^{k-1})\Bigr]. \] #### Factor using \(\alpha^2 = \alpha + 1\) and \(\beta^2 = \beta + 1\) \[ \alpha^k + \alpha^{k-1} \;=\; \alpha^{k-1}\,\bigl(\alpha + 1\bigr) \;=\; \alpha^{k-1}\,(\alpha^2) \;=\; \alpha^{k+1}. \] (The last equality holds because \(\alpha^2 = \alpha + 1\).) Similarly, \[ \beta^k + \beta^{k-1} \;=\; \beta^{k-1}(\beta + 1) \;=\; \beta^{k-1}\,\beta^2 \;=\; \beta^{k+1}. \] Therefore, \[ (\alpha^k + \alpha^{k-1}) - (\beta^k + \beta^{k-1}) \;=\; \alpha^{k+1} - \beta^{k+1}. \] Hence, \[ F_{k-1} + F_{k-2} \;=\; \frac{1}{\sqrt{5}} \Bigl[\alpha^{k+1} - \beta^{k+1}\Bigr] \;=\; F_k. \] This shows precisely that \[ F_k = F_{k-1} + F_{k-2}, \] as required. --- ## Conclusion By direct algebraic manipulation and the fact that \(\alpha\) and \(\beta\) are roots of \(x^2 - x - 1 = 0\), we see the closed‐form expression \[ F_n = \frac{1}{\sqrt{5}} \Bigl[\Bigl(\tfrac{1+\sqrt{5}}{2}\Bigr)^{n+1} - \Bigl(\tfrac{1-\sqrt{5}}{2}\Bigr)^{n+1}\Bigr] \] satisfies the Fibonacci recurrence \(F_k = F_{k-1} + F_{k-2}\) for all \(k\ge2\).
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.