Answer
$\dfrac{4}{7}$ or, $57.1 \%$
Work Step by Step
The probability that the point $T$ lies on the segment $\overline{BD}$ can be computed as:
$P(T \in \overline{BD})=\dfrac{BD}{AD}$
Where, $BD=10-6=4$ and $AD=10-3=7$
Now, $P(T \in \overline{AB})=\dfrac{BD}{AD}=\dfrac{4}{7}$ or, $57.1 \%$