Linear Algebra: A Modern Introduction

Published by Cengage Learning
ISBN 10: 1285463242
ISBN 13: 978-1-28546-324-7

Chapter 4 - Eigenvalues and Eigenvectors - 4.2 Determinants - Exercises 4.2 - Page 281: 13

Answer

4

Work Step by Step

First, use cofactor expansion (Theorem 4.1) along the third row because that is the row/column with the most zeros: \[ \begin{vmatrix} 1 & -1 & 0 & 3\\2 & 5 & 2 & 6\\0 & 1 & 0 & 0\\1 & 4 & 2 & 1 \end{vmatrix} = 0 \cdot \begin{vmatrix} -1 & 0 & 3\\5 & 2 & 6\\4 & 2 & 1 \end{vmatrix} -1 \cdot \begin{vmatrix} 1 & 0 & 3\\2 & 2 & 6\\1 & 2 & 1 \end{vmatrix} +0 \cdot \begin{vmatrix} 1 & -1 & 3\\2 & 5 & 6\\1 & 4 & 1 \end{vmatrix} -0 \cdot \begin{vmatrix} 1 & -1 & 0\\2 & 5 & 2\\1 & 4 & 2 \end{vmatrix} \] Then simplify the expansion: $=0 -1 \cdot \begin{vmatrix} 1 & 0 & 3\\2 & 2 & 6\\1 & 2 & 1 \end{vmatrix} +0-0$ Now expand along the second column: =$-1 \cdot (-0+2 \cdot \begin{vmatrix} 1 & 3\\1 & 1 \end{vmatrix} -2 \cdot \begin{vmatrix} 1 & 3\\2 & 6 \end{vmatrix})$ Lastly, simplify the expansion: $=-1 \cdot (2 \cdot (1-3)-2 \cdot(6-6))$ $=-(2 \cdot -2)$ $=4$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.