Linear Algebra: A Modern Introduction

Published by Cengage Learning
ISBN 10: 1285463242
ISBN 13: 978-1-28546-324-7

Chapter 3 - Matrices - 3.6 Introduction to Linear Transformations - Exercises 3.6 - Page 224: 14

Answer

$\begin{bmatrix} 1 & 0&1 \\ 0 & 1&1 \\ 1&1&0 \end{bmatrix}$

Work Step by Step

We have: $A=T( \begin{bmatrix} x\\ y \\ z\end{bmatrix} )=\begin{bmatrix} x+z\\y+z \\x+y\end{bmatrix}\\=\begin{bmatrix} x\\0\\x \end{bmatrix}+\begin{bmatrix} 0\\y\\y \end{bmatrix}+\begin{bmatrix} z\\z\\0 \end{bmatrix}\\=\begin{bmatrix} 1 & 0&1 \\ 0 & 1&1 \\ 1&1&0 \end{bmatrix}$ Thus, the required standard matrix of the linear transformation is: $A=\begin{bmatrix} 1 & 0&1 \\ 0 & 1&1 \\ 1&1&0 \end{bmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.