Linear Algebra: A Modern Introduction

Published by Cengage Learning
ISBN 10: 1285463242
ISBN 13: 978-1-28546-324-7

Chapter 3 - Matrices - 3.6 Introduction to Linear Transformations - Exercises 3.6 - Page 224: 11

Answer

$A=\begin{bmatrix} 1 &1 \\ 1 &-1 \end{bmatrix}$

Work Step by Step

We have: $A=T( \begin{bmatrix} x\\ y \end{bmatrix} )=\begin{bmatrix} x+y\\ x-y \end{bmatrix}\\=\begin{bmatrix} x\\ x \end{bmatrix}+\begin{bmatrix} y\\ -y \end{bmatrix}\\=\begin{bmatrix} 1 &1 \\ 1 &-1 \end{bmatrix}$ Thus, the required standard matrix of the linear transformation is: $A=\begin{bmatrix} 1 &1 \\ 1 &-1 \end{bmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.