Linear Algebra: A Modern Introduction

Published by Cengage Learning
ISBN 10: 1285463242
ISBN 13: 978-1-28546-324-7

Chapter 3 - Matrices - 3.2 Matrix Algebra - Exercises 3.2 - Page 161: 6

Answer

$$B=3A_1-4A_2-A_3.$$

Work Step by Step

Let $$ B=\left[\begin{array}{ccc}{2} & {3} \\ {-4} & {2}\end{array}\right], \quad A_1=\left[\begin{array}{ccc}{1} & {0} \\ {0} & {1}\end{array}\right], \quad A_2=\left[\begin{array}{ccc}{0} & {-1} \\ {1} & {0}\end{array}\right], \quad A_3=\left[\begin{array}{ccc}{1} & { 1} \\ {0} & {1}\end{array}\right] $$ We have $$B=aA_1+bA_2+cA_3=a\left[\begin{array}{ccc}{1} & {0} \\ {0} & {1}\end{array}\right]+b\left[\begin{array}{ccc}{0} & {-1} \\ {1} & {0}\end{array}\right]+c\left[\begin{array}{ccc}{1} & { 1} \\ {0} & {1}\end{array}\right] $$ and hence we get the system $$a+c=2, \quad -b+c=3,\quad b=-4, \quad a+c=2.$$ The above system has the solution $a=3$, $b=-4$ and $c=-1$ so $$B=3A_1-4A_2-A_3.$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.