University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 9 - Section 9.7 - Power Series - Exercises - Page 531: 47

Answer

Interval of Convergence: $ -\sqrt 2 \lt x \sqrt 2$ and $\Sigma_{n=0}^{\infty} (\dfrac{x^2+1}{3})^n=\dfrac{3}{2-x^2}$

Work Step by Step

The series will converge when $|f(x)|=|\dfrac{x^2+1}{3}| \lt 1$ So, $x^2+1 \lt 3$ $ \implies x^2 \lt 2$ $ \implies -\sqrt 2 \lt x \sqrt 2$ Now, the sum of the given geometric series is: $S=\dfrac{a}{1-r}=\dfrac{1}{1-\dfrac{x^2+1}{3}}=\dfrac{3}{2-x^2}$ Thus, the Interval of Convergence is: $ -\sqrt 2 \lt x \sqrt 2$ and $\Sigma_{n=0}^{\infty} (\dfrac{x^2+1}{3})^n=\dfrac{3}{2-x^2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.