University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 9 - Section 9.10 - The Binomial Series and Applications of Taylor Series - Practice Exercises - Page 553: 73

Answer

$\dfrac{7}{2}$

Work Step by Step

We know that the Taylor Series for $e^x$ and $\sin x$ is defined as: $e^x=1+x+\dfrac{x^2}{2!}+\dfrac{x^3}{3!}+\dfrac{x^4}{4!}+...$ and $ \sin x={(2n+1)!}=x-\dfrac{x^3}{3!}+\dfrac{x^5}{5!}-\dfrac{x^7}{7!}+...$ Now, $\lim\limits_{ x \to 0}\dfrac{7 \sin x}{e^{2x}-1}=\lim\limits_{ x \to 0}\dfrac{7 (x-\dfrac{x^3}{3!}+\dfrac{x^5}{5!}-\dfrac{x^7}{7!}+...)}{(1+2x+\dfrac{(2x)^2}{2!}+\dfrac{(2x)^3}{3!}+\dfrac{(2x)^4}{4!}+.)-1}$ or, $=\lim\limits_{ x \to 0}[\dfrac{7x (1-\dfrac{x^2}{3!}+\dfrac{x^4}{5!}-...)}{x(2+\dfrac{4x}{2!}+\dfrac{8x^2}{3!}+...)}]$ or, $\dfrac{7 (1-0+0-...)}{(2+0+0+...)}=\dfrac{7}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.