University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 8 - Section 8.4 - Integration of Rational Functions by Partial Fractions - Exercises - Page 446: 38

Answer

$$\int\frac{2y^4}{y^3-y^2+y-1}dy=y^2+2y+\ln|y-1|-\frac{1}{2}\ln|y^2+1|-\tan^{-1}y+C$$

Work Step by Step

$$I=\int\frac{2y^4}{y^3-y^2+y-1}dy$$ 1) Perform long division: We perform long division to rewrite the fraction as a polynomial plus a proper fraction, which is $$\frac{2y^4}{y^3-y^2+y-1}=2y+2+\frac{2}{y^3-y^2+y-1}=2y+2+\frac{2}{(y-1)(y^2+1)}$$ 2) Express the remainder fraction as a sum of partial fractions: $$\frac{2}{(y-1)(y^2+1)}=\frac{A}{y-1}+\frac{By+C}{y^2+1}$$ (since $y^2+1$ is irreducible) Clear fractions: $$A(y^2+1)+(By+C)(y-1)=2$$ $$Ay^2+A+By^2+Cy-By-C=2$$ $$(A+B)y^2+(-B+C)y+(A-C)=2$$ Equating coefficients of corresponding powers of $y$, we get $A+B=0$ $-B+C=0$ $A-C=2$ Solving for $A$, $B$ and $C$, we get $A=1$ and $B=C=-1$ Therefore, $$\frac{2}{(y-1)(y^2+1)}=\frac{1}{y-1}-\frac{y+1}{y^2+1}$$ 2) Evaluate the integral: $$I=\int (2y+2)dy+\int\frac{1}{y-1}dy-\int\frac{y}{y^2+1}dy-\int\frac{1}{y^2+1}dy$$ $$I=y^2+2y+\ln|y-1|-\frac{1}{2}\int\frac{1}{y^2+1}d(y^2+1)-\tan^{-1}y$$ $$I=y^2+2y+\ln|y-1|-\frac{1}{2}\ln|y^2+1|-\tan^{-1}y+C$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.