University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 8 - Section 8.1 - Integration by Parts - Exercises - Page 427: 25

Answer

$$\int e^{\sqrt{3s+9}}ds=\frac{2}{3}e^{\sqrt{3s+9}}(\sqrt{3s+9}-1)+C$$

Work Step by Step

$$A=\int e^{\sqrt{3s+9}}ds$$ Let $x=\sqrt{3s+9}$. We would have $dx=\frac{(3s+9)'}{2\sqrt{3s+9}}ds=\frac{3}{2\sqrt{3s+9}}ds=\frac{3}{2x}ds$ That means $ds=\frac{2x}{3}dx$ $$A=\int e^x\times\frac{2x}{3}dx=\frac{2}{3}\int xe^x dx$$ Take $u=x$ and $dv=e^x dx$ We then have $du=dx$ and $v=e^x$ Apply the formula $\int udv= uv-\int vdu$, we have $$A=\frac{2}{3}\Big(xe^x-\int e^xdx\Big)$$ $$A=\frac{2}{3}\Big(xe^x-e^x\Big)+C$$ $$A=\frac{2}{3}e^x(x-1)+C$$ Replace $x$ back with $\sqrt{3s+9}$: $$A=\frac{2}{3}e^{\sqrt{3s+9}}(\sqrt{3s+9}-1)+C$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.