University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 8 - Practice Exercises - Page 474: 50


$\overline{C_v}=5.434$ and $T\approx 396.45^{\circ} C$

Work Step by Step

The average value of $C_v$ is given as follows: $\overline{C_v}=\dfrac{1}{675-20} \int_{20}^{675} [8.27 +10^{-5} (26 T-1.87 T^2)] dT ....(1)$ Now, by using Simpson's Rule, we need to plug into equation (1) $a=20; b=675; $ and let us suppose that $n=2$ Thus, we have $\overline{C_v}=5.434$; this implies that for this average value of temperature, the value of $n=4$ is sufficient. Now, the temperature is: $T= 8.27 +10^{-5} (26 T-1.87 T^2)=5.434 \implies T \approx 396.45^{\circ} C$ So, $\overline{C_v}=5.434$ and $T\approx 396.45^{\circ} C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.