University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 8 - Practice Exercises - Page 474: 47


a) $\int_{0}^{2 \pi} 2 \sin^2 x dx =\pi$ b) $\int_{0}^{2 \pi} 2 \sin^2 x dx =\pi$

Work Step by Step

a) By using the Trapezoidal Rule: $\int_a^b f(x) dx \approx T =\dfrac{\triangle x}{2}(y_0+y_1+y_2+......+y_n)$ So, $\int_{0}^{2 \pi} 2 \sin^2 x dx \approx T =\dfrac{\frac{\pi}{6}}{2}(2 \sin^2 (0)+2[2 \sin^2 (\pi/6)]+2[2 \sin^2 (\pi/3)]+......)=\dfrac{\pi}{12}(0+1+3+4+.....)=\pi$ b) By using Simpson's Rule: $\int_a^b f(x) dx \approx T =\dfrac{\triangle x}{3}(y_0+4y_1+2y_2+4y_3+......+y_n)$ So, $\int_{0}^{2 \pi} 2 \sin^2 x dx \approx T =\dfrac{\frac{\pi}{6}}{3}(2 \sin^2 (0)+4[2 \sin^2 (\pi/6)]+2[2 \sin^2 (\pi/3)]+......)=\dfrac{\pi}{18}(0+2+3+8+.....)=\pi$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.