University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 7 - Section 7.3 - Hyperbolic Functions - Exercises - Page 418: 73

Answer

$a.\quad[\sinh^{-1}u]_{0}^{0}=0$ $b.\quad[\ln(x+\sqrt{x^{2}+1})]_{0}^{0}=0$

Work Step by Step

$(a)$ Substitute:$\quad \left[\begin{array}{ll} u=\sin x & du=\cos xdx\\ x=0 & \rightarrow u=0\\ x=\pi & \rightarrow u=0 \end{array}\right]$ $I=\displaystyle \int_{0}^{0}\frac{1}{\sqrt{1+u^{2}}}du$ Using the table "lntegrals leading to inverse hyperbolic functions" $\displaystyle \int\frac{du}{\sqrt{a^{2}+u^{2}}}=\sinh^{-1}(\frac{u}{a})+C$, we would proceed solving in terms of hyperbolic functions, but, since the bounds of our new definite integral are equal, we know that the integral equals 0. Just to demonstrate, $(a=1)$ $I=[\sinh^{-1}u]_{0}^{0}=\sinh^{-1}0-\sinh^{-1}0$ $=0-0$ $=0$ $(b)$ Again, we know that the definite integral equals zero, but to illustrate the conversion of inverse hyperbolic to ln, we would use the formulas in the box above these exercises, by which $\sinh^{-1}x=\ln(x+\sqrt{x^{2}+1}),$ So, $I=[\ln(x+\sqrt{x^{2}+1})]_{0}^{0}$ $=\ln(0+\sqrt{0+1})-\ln(0+\sqrt{0+1})$ $=\ln 1-\ln 1$ $=0-0$ $=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.