University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 3 - Section 3.8 - Derivatives of Inverse Functions and Logarithms - Exercises - Page 174: 15



Work Step by Step

$$y=\ln\frac{3}{x}$$ Recall the Derivative Rule for Natural Logarithm: $$\frac{d}{dx}(\ln u)=\frac{1}{u}\frac{du}{dx}$$ Therefore, we have $$y'=\Big(\ln\frac{3}{x}\Big)'=\frac{1}{\frac{3}{x}}\Big(\frac{3}{x}\Big)'=\frac{x}{3}\times\frac{(3)'x-3(x)'}{x^2}$$ $$y'=\frac{1}{3}\times\frac{0\times x-3\times1}{x}=\frac{1}{3}\times\frac{(-3)}{x}$$ $$y'=-\frac{1}{x}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.