University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 3 - Section 3.7 - Implicit Differentiation - Exercises - Page 165: 46

Answer

a) At $(4,2)$, the slope of the curve is $5/4$ and at $(2,4)$, that is $4/5$. b) Besides the origin, at $(3\sqrt[3]2,3\sqrt[3]4)$, the folium also has a horizontal tangent. c) At the origin and at $(3\sqrt[3]4,3\sqrt[3]2)$, the folium has vertical tangents.

Work Step by Step

$$x^3+y^3-9xy=0$$ Find the derivative of the function using implicit differentiation: $$3x^2+3y^2y'-9(y+xy')=0$$ $$x^2+y^2y'-3(y+xy')=0$$ $$x^2+y^2y'-3y-3xy'=0$$ $$y'(y^2-3x)=3y-x^2$$ $$y'=\frac{3y-x^2}{y^2-3x}$$ a) The slope of the folium at $(4,2)$ is $$y'=\frac{3\times2-4^2}{2^2-3\times4}=\frac{-10}{-8}=\frac{5}{4}$$ - The slope of the folium at $(2,4)$ is $$y'=\frac{3\times4-2^2}{4^2-3\times2}=\frac{8}{10}=\frac{4}{5}$$ b) The folium has a horizontal tangent when there are points $A(x,y)$ in the folium for which $y'=0$: $$y'=0$$ $$\frac{3y-x^2}{y^2-3x}=0$$ $$3y-x^2=0$$ $$y=\frac{x^2}{3}$$ Now we substitute $y=(x^2)/3$ back to the formula of the function $x^3+y^3-9xy=0$ to find if there exists any point $A$ besides the origin for which $y'=0$ or not: $$x^3+\Big(\frac{x^2}{3}\Big)^3-9x\times\frac{x^2}{3}=0$$ $$x^3+\frac{x^6}{27}-3x^3=0$$ $$\frac{x^6}{27}-2x^3=0$$ $$x^3\Big(\frac{x^3}{27}-2\Big)=0$$ $$x=0\hspace{1cm}\text{or}\hspace{1cm}\frac{x^3}{27}-2=0$$ Since the question asks for points besides the origin, we leave out $x=0$. $$\frac{x^3}{27}-2=0$$ $$x^3=54$$ $$x=\sqrt[3]{54}=\sqrt[3]{27\times2}=3\sqrt[3]2$$ - For $x=3\sqrt[3]2$: $y=\frac{(3\sqrt[3]2)^2}{3}=\frac{9\times\sqrt[3]4}{3}=3\sqrt[3]4$ So at the point $(3\sqrt[3]2,3\sqrt[3]4)$, the folium also has a horizontal tangent. c) Similarly, the folium has a vertical tangent, whose slope is undefined, when there are points $A(x,y)$ in the folium for which $y'$ is also undefined. In this case, it happens when the denominator of $y'$ equals $0$: $$y^2-3x=0$$ $$3x=y^2$$ $$x=\frac{y^2}{3}$$ Now we substitute $x=(y^2)/3$ back to the formula of the function $x^3+y^3-9xy=0$ to find $A$: $$\Big(\frac{y^2}{3}\Big)^3+y^3-9y\times\frac{y^2}{3}=0$$ $$\frac{y^6}{27}+y^3-3y^3=0$$ $$\frac{y^6}{27}-2y^3=0$$ $$y^3\Big(\frac{y^3}{27}-2\Big)=0$$ $$y=0\hspace{1cm}\text{or}\hspace{1cm}\frac{y^3}{27}-2=0$$ $$y=0\hspace{1cm}\text{or}\hspace{1cm}y^3=54$$ $$y=0\hspace{1cm}\text{or}\hspace{1cm}y=\sqrt[3]{54}=3\sqrt[3]2$$ - For $y=0$: this is the origin. - For $y=3\sqrt[3]2$: $x=\frac{(3\sqrt[3]2)^2}{3}=\frac{9\times\sqrt[3]4}{3}=3\sqrt[3]4$ So at the origin and at the point $(3\sqrt[3]4,3\sqrt[3]2)$, the folium has vertical tangents.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.