University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 3 - Section 3.1 - Tangents and the Derivative at a Point - Exercises - Page 119: 46

Answer

The graph of the given function has 2 vertical tangents at $x=0$ and $x=1$.
1537626942

Work Step by Step

$$y=f(x)=x^{1/3}+(x-1)^{1/3}$$ a) The graph is enclosed below. From the introduction, we can guess that the graph appears to have 2 vertical tangents, one at $x=0$ and the other at $x=1$. We will test this in part b). b) The graph of $f(x)$ has a vertical tangent at $x$ when 1) $f$ is continuous at $x$ 2) $$f′(x)=\lim_{h\to0}\frac{f(x+h)−f(x)}{h}=\pm\infty$$ First, for $f'(0)$: $$f′(0)=\lim_{h\to0}\frac{f(h)−f(0)}{h}=\lim_{h\to0}\frac{h^{1/3}+(h-1)^{1/3}-\Big(0^{1/3}+(0-1)^{1/3}\Big)}{h}$$ $$f'(0)=\lim_{h\to0}\frac{h^{1/3}+(h-1)^{1/3}-(0-1)}{h}=\lim_{h\to0}\frac{h^{1/3}+(h-1)^{1/3}+1}{h}$$ $$f'(0)=\lim_{h\to0}\frac{(h-1)^{1/3}+1}{h}+\lim_{h\to0}\frac{h^{1/3}}{h}=A+B$$ $$A=\lim_{h\to0}\frac{(h-1)^{1/3}+1}{h}$$ Multiply both numerator and denominator by $(h-1)^{2/3}-(h-1)^{1/3}+1$: $$A=\lim_{h\to0}\frac{\Big((h-1)^{1/3}+1\Big)\Big((h-1)^{2/3}-(h-1)^{1/3}+1\Big)}{h\Big((h-1)^{2/3}-(h-1)^{1/3}+1\Big)}$$ $$A=\lim_{h\to0}\frac{h-1+1}{h\Big((h-1)^{2/3}-(h-1)^{1/3}+1\Big)}$$ $$A=\lim_{h\to0}\frac{h}{h\Big((h-1)^{2/3}-(h-1)^{1/3}+1\Big)}$$ $$A=\lim_{h\to0}\frac{1}{(h-1)^{2/3}-(h-1)^{1/3}+1}$$ $$A=\frac{1}{(0-1)^{2/3}-(0-1)^{1/3}+1}=\frac{1}{1-(-1)+1}=\frac{1}{3}$$ $$B=\lim_{h\to0}\frac{h^{1/3}}{h}=\lim_{h\to0}\frac{1}{h^{2/3}}$$ - As $h\to0^+$ or $h\to0^-$, $h^{2/3}$ always approaches $0^+$, so $\lim_{h\to0}\frac{1}{h^{2/3}}=\infty$. In conclusion, $$f'(0)=A+B=\frac{1}{3}+\infty=\infty$$ This means $f$ has a vertical tangent at $x=0$ as predicted. Second, for $f'(1)$: $$f′(1)=\lim_{h\to0}\frac{f(h+1)−f(1)}{h}$$ $$f'(1)=\lim_{h\to0}\frac{\Big((h+1)^{1/3}+(h+1-1)^{1/3}\Big)-\Big(1^{1/3}+(1-1)^{1/3}\Big)}{h}$$ $$f'(1)=\lim_{h\to0}\frac{\Big((h+1)^{1/3}+h^{1/3}\Big)-(1+0)}{h}$$ $$f'(1)=\lim_{h\to0}\frac{(h+1)^{1/3}+h^{1/3}-1}{h}=\lim_{h\to0}\frac{(h+1)^{1/3}-1}{h}+\lim_{h\to0}\frac{h^{1/3}}{h}$$ $$f'(1)=A+B$$ $$A=\lim_{h\to0}\frac{(h+1)^{1/3}-1}{h}$$ Multiply both numerator and denominator by $(h+1)^{2/3}+(h+1)^{1/3}+1$: $$A=\lim_{h\to0}\frac{\Big((h+1)^{1/3}-1\Big)\Big((h+1)^{2/3}+(h+1)^{1/3}+1\Big)}{h\Big((h+1)^{2/3}+(h+1)^{1/3}+1\Big)}$$ $$A=\lim_{h\to0}\frac{(h+1)-1}{h\Big((h+1)^{2/3}+(h+1)^{1/3}+1\Big)}$$ $$A=\lim_{h\to0}\frac{h}{h\Big((h+1)^{2/3}+(h+1)^{1/3}+1\Big)}$$ $$A=\lim_{h\to0}\frac{1}{(h+1)^{2/3}+(h+1)^{1/3}+1}$$ $$A=\frac{1}{(0+1)^{2/3}+(0+1)^{1/3}+1}=\frac{1}{3}$$ $$B=\lim_{h\to0}\frac{h^{1/3}}{h}=\lim_{h\to0}\frac{1}{h^{2/3}}$$ - As $h\to0^+$ or $h\to0^-$, $h^{2/3}$ always approaches $0^+$, so $\lim_{h\to0}\frac{1}{h^{2/3}}=\infty$. In conclusion, $$f'(1)=A+B=\frac{1}{3}+\infty=\infty$$ This means $f$ has a vertical tangent at $x=1$ as predicted.
Small 1537626942
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.