## University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson

# Chapter 2 - Section 2.3 - The Precise Definition of a Limit - Exercises - Page 76: 48

#### Answer

To prove the limit, prove that given $\epsilon\gt0$ there exists a $\delta\gt0$ such that for all $x$ $$0\lt|x|\lt\delta\Rightarrow|f(x)|\lt\epsilon$$

#### Work Step by Step

$\lim_{x\to0}f(x)=0$ if $f(x)=2x$ for $x\lt 0$ and $f(x)=x/2$ for $x\ge0$ Our job is to prove that given $\epsilon\gt0$ there exists a $\delta\gt0$ such that for all $x$ $$0\lt|x|\lt\delta\Rightarrow|f(x)|\lt\epsilon$$ 1) Solve the inequality $|f(x)|\lt\epsilon$ to find an open interval containing $x=0$ on which the inequality holds for all $x\ne0$ $$|f(x)|\lt\epsilon$$ However, since we have $2$ functions of $f(x)$, we need to divide into 2 cases: *Case 1: For $x\lt0$, $f(x)=2x$. This also means $2x\lt0$, and $|2x|=-2x$ $$|2x|\lt\epsilon$$ $$-2x\lt\epsilon$$ $$x\gt-\frac{\epsilon}{2}$$ *Case 2: For $x\ge0$, $f(x)=x/2$. This also means $x/2\ge0$, and $|x/2|=x/2$ $$|\frac{x}{2}|\lt\epsilon$$ $$\frac{x}{2}\lt\epsilon$$ $$x\lt2\epsilon$$ Combining 2 cases, the open interval on which the inequality holds is $(-\epsilon/2,2\epsilon)$. 2) Find a value of $\delta\gt0$ that places the centered interval $(-\delta,\delta)$ inside the interval $(-\epsilon/2,2\epsilon)$ Take $\delta$ to be the distance from $0$ to the nearer endpoint of $(-\epsilon/2,2\epsilon)$. In other words, $\delta=\min[0-(-\epsilon/2),2\epsilon-0]=\min[\epsilon/2,2\epsilon]$ So if $\delta$ has this or any smaller positive value, then the constraint $0\lt|x|\lt\delta$ will automatically place $x$ between $-\epsilon/2$ and $2\epsilon$ so that $|f(x)|\lt\epsilon$. That means for all $x$, $$0\lt|x|\lt\delta\Rightarrow|f(x)|\lt\epsilon$$ This completes our proof.

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.