University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 15 - Section 15.1 - Line Integrals - Exercises - Page 827: 19

Answer

a) $4 \sqrt 5$ b) $\dfrac{17 \sqrt {17}-1}{12}$

Work Step by Step

a ) Here, we have $ ds=\sqrt {(\dfrac{dx}{dt})^2+(\dfrac{dy}{dt})^2+(\dfrac{dz}{dt})^2} dt$ and $ds= \dfrac{\sqrt 5}{2} dt$ This implies that $L=\int_{0}^{4} (t) ( \dfrac{\sqrt 5}{2} dt)$ or, $ \dfrac{\sqrt 5}{2} [\dfrac{t^2}{2}]_{0}^{4}=4 \sqrt 5$ b) Here, we have $ ds=\sqrt {(\dfrac{dx}{dt})^2+(\dfrac{dy}{dt})^2+(\dfrac{dz}{dt})^2} dt$ and $ds=\sqrt {1+4t^2} dt$ This implies that $L=\int_{0}^{2} (t) ( \sqrt {1+4t^2}) dt$ Plug $1+4t^2 =p \implies t dt =\dfrac{dp}{8}$ or, $\int_{1}^{17} (\dfrac{1}{8}) p^{1/2} dp= \dfrac{1}{8} [\dfrac{2}{3}u^{3/2}]_{1}^{17}=\dfrac{17 \sqrt {17}-1}{12}$ Hence, a) $4 \sqrt 5$ b) $\dfrac{17 \sqrt {17}-1}{12}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.