University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 10 - Section 10.2 - Calculus with Parametric Curves - Exercises - Page 572: 13

Answer

Tangent line: $\quad y=9x-1$ $\displaystyle \left.\frac{d^{2}y}{dx^{2}}\right|_{t=2}=108$

Work Step by Step

$\displaystyle \frac{dx}{dt}=-(t+1)^{-2},\qquad \displaystyle \frac{dy}{dt}=-(t-1)^{-2}$ $\displaystyle \frac{dy}{dx}=\frac{dy/dt}{dx/dt}=\frac{-(t-1)^{-2}}{-(t+1)^{-2}}=\frac{(t+1)^{2}}{(t-1)^{2}}$ The slope of the tangent line at $t=2$ is $\left. \displaystyle \frac{dy}{dx} \right|_{t=\pi/2}=\frac{(2+1)^{2}}{(2-1)^{2}}=9$ With $y'=\displaystyle \frac{dy}{dx}$, we find $\displaystyle \left.\frac{d^{2}y}{dx^{2}}\right|_{t=2}$, $\displaystyle \frac{dy'}{dt}=\frac{d}{dt}[\frac{(t+1)^{2}}{(t-1)^{2}}]=\frac{2(t+1)(t-1)^{2}-2(t-1)(t+1)^{2}}{(t-1)^{4}}$ $=\displaystyle \frac{2(t+1)(t-1)[t-1-(t+1)]}{(t-1)^{4}}$ $=\displaystyle \frac{2(t+1)[-2]}{(t-1)^{3}}$ $=\displaystyle \frac{-4(t+1)}{(t-1)^{3}}$ $\displaystyle \frac{d^{2}y}{dx^{2}}=\frac{dy'/dt}{dx/dt}=\frac{\frac{-4(t+1)}{(t-1)^{3}}}{-(t+1)^{-2}}=\frac{4(t+1)^{3}}{(t-1)^{3}}$ $\displaystyle \left.\frac{d^{2}y}{dx^{2}}\right|_{t=2}=\frac{4(2+1)^{3}}{(2-1)^{3}}=4(27)=108$ The point $P$ on the curve corresponding to $t=2$ is $P(\displaystyle \frac{1}{2+1},\ \frac{2}{2-1})=(\frac{1}{3},2)$ Use the point-slope equation for the tangent line. $y-2=9\displaystyle \cdot(x-\frac{1}{3})$ $y=9x-3+2$ $y=9x-1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.