University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 10 - Section 10.2 - Calculus with Parametric Curves - Exercises - Page 572: 11

Answer

Tangent line: $\quad y=\displaystyle \sqrt{3}x-\frac{\pi\sqrt{3}}{3}+2$ $\displaystyle \left.\frac{d^{2}y}{dx^{2}}\right|_{t=\pi/3} =-4$

Work Step by Step

$\displaystyle \frac{dx}{dt}=1-\cos t,\qquad \displaystyle \frac{dy}{dt}=\sin t$ $\displaystyle \frac{dy}{dx}=\frac{dy/dt}{dx/dt}=\frac{\sin t}{1-\cos t}$ The slope of the tangent line at $t=\pi/3$ is $\left. \displaystyle \frac{dy}{dx} \right|_{t=\pi/3}=\frac{\frac{\sqrt{3}}{2}}{1-\frac{1}{2}}=\sqrt{3}$ With $y'=\displaystyle \frac{dy}{dx}$, we find $\displaystyle \left.\frac{d^{2}y}{dx^{2}}\right|_{t=\pi/3}$, $\displaystyle \frac{dy'}{dt}=\frac{d}{dt}[\frac{\sin t}{1-\cos t}]=\frac{(1-\cos t)(\cos t)-(\sin t)(\sin t)}{(1-\cos t)^{2}}$ $=\displaystyle \frac{\cos t-(\cos^{2}t+\sin^{2}t)}{(1-\cos t)^{2}}$ $=\displaystyle \frac{\cos t-1}{(1-\cos t)^{2}}$ $=-\displaystyle \frac{(1-\cos t)}{(1-\cos t)^{2}}$ $=-\displaystyle \frac{1}{1-\cos t}$ $\displaystyle \frac{d^{2}y}{dx^{2}}=\frac{dy'/dt}{dx/dt}=\frac{-\frac{1}{1-\cos t}}{1-\cos t}=-\frac{1}{(1-\cos t)^{2}}$ $\displaystyle \left.\frac{d^{2}y}{dx^{2}}\right|_{t=\pi/3} = -\frac{1}{(1-\frac{1}{2})^{2}}=-4$ The point $P$ on the curve corresponding to $t=\pi/3$ $x=\displaystyle \frac{\pi}{3}-\frac{\sqrt{3}}{2},\quad,y=1-\frac{1}{2}=\frac{1}{2},$ is $P(\displaystyle \frac{\pi}{3}-\frac{\sqrt{3}}{2},\frac{1}{2})$ Use the point-slope equation for the tangent line. $y-\displaystyle \frac{1}{2}=\sqrt{3}\cdot(x-\frac{\pi}{3}+\frac{\sqrt{3}}{2})$ $y=\displaystyle \sqrt{3}x-\frac{\pi\sqrt{3}}{3}+\frac{3}{2}+\frac{1}{2}$ $y=\displaystyle \sqrt{3}x-\frac{\pi\sqrt{3}}{3}+2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.