University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 10 - Practice Exercises - Page 594: 59


$\dfrac{4}{1+2\cos \theta}$; equation of a hyperbola

Work Step by Step

The polar equation of a conic with eccentricity $e$ and directrix $x=k$ is: $r=\dfrac{ke}{1+e \cos \theta}$ ...(1) We are given that the vertices are: $e=2,k=2$ Then $x=2$ Thus, equation (1), becomes $r=\dfrac{4}{1+2\cos \theta}$; equation of a hyperbola
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.