Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 9: First-Order Differential Equations - Section 9.2 - First-Order Linear Equations - Exercises 9.2 - Page 538: 30

Answer

$y=\dfrac{e^x}{e^x-xe^x+c}$

Work Step by Step

On compare the equation $y'-y=xy^2$ with Bernoulli with $n=2$ Suppose $p=y^{1-2}=y^{-1}$ Then $\dfrac{dp}{dx}=(-1)y^{-2}\dfrac{dy}{dx}$ $\dfrac{dp}{dx}+(\dfrac{1}{y}) =-x \implies \dfrac{dp}{dx}+p=x$ The integrating factor is: $I=e^{\int (1)dx}=e^{x}$ $\dfrac{dp}{dx}+p=x \implies \int [p(e^x)]'=\int xe^x dx $ Thus, $-pe^x=e^{x}(x-1)+c \implies y=\dfrac{e^x}{e^x-(xe^x)+c}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.