Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.1 - Using Basic Integration Formulas - Exercises 8.1 - Page 449: 49

Answer

$$\frac{{{{\left( {{x^4} + 1} \right)}^{3/2}}}}{{30}}\left( {3{x^4} - 2} \right) + C $$

Work Step by Step

$$\eqalign{ & \int {{x^7}\sqrt {{x^4} + 1} } dx \cr & {\text{integrate by the substitution method}} \cr & {\text{set }}u = {x^4} + 1,\,\,\,\,{x^4} = u - 1{\text{ then }}du = 4{x^3}dx,\,\,\,\,dx = \frac{{du}}{{4{x^3}}} \cr & {\text{write the integrand in terms of }}u \cr & \int {{x^7}\sqrt {{x^4} + 1} } dx = \int {{x^7}\sqrt u } \left( {\frac{{du}}{{4{x^3}}}} \right) \cr & = \int {\left( {u - 1} \right)\sqrt u } \left( {\frac{{du}}{4}} \right) \cr & = \frac{1}{4}\int {\left( {u - 1} \right){u^{1/2}}} du \cr & = \frac{1}{4}\int {\left( {{u^{3/2}} - {u^{1/2}}} \right)} du \cr & {\text{integrating}}{\text{,}} \cr & = \frac{1}{4}\left( {\frac{{{u^{5/2}}}}{{5/2}} - \frac{{{u^{3/2}}}}{{3/2}}} \right) + C \cr & = \frac{2}{{4\left( {15} \right)}}\left( {3{u^{5/2}} - 5{u^{3/2}}} \right) + C \cr & = \frac{{{u^{3/2}}}}{{30}}\left( {3u - 5} \right) + C \cr & {\text{replace }}{x^4} + 1{\text{ for }}u \cr & = \frac{{{{\left( {{x^4} + 1} \right)}^{3/2}}}}{{30}}\left( {3\left( {{x^4} + 1} \right) - 5} \right) + C \cr & = \frac{{{{\left( {{x^4} + 1} \right)}^{3/2}}}}{{30}}\left( {3{x^4} - 2} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.