Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.6 - Inverse Trigonometric Functions - Exercises 7.6 - Page 423: 113

Answer

See below.

Work Step by Step

$\sin^{-1}x$ is the number $y $in $[-\pi/2,\pi/2]$ for which $\sin y=x$ $\cos^{-1}x$ is the number $y $in $[0,\pi]$ for which $\cos y=x$ $\sin^{-1}-1=-\pi/2,\quad \cos^{-1}-1=\pi$ ... so the equation stands for $x=-1$ $\sin^{-1}0=0,\quad \cos^{-1}0=\pi/2$ ... so the equation stands for $x=0$ $\sin^{-1}1=\pi/2,\quad \cos^{-1}1=0$ ... so the equation stands for $x=1$ For $a\in(-1,0)$, its opposite, $x=-a$ is in $(0,1)$ equation (1) $\Rightarrow \sin^{-1}(a)=\sin^{-1}(-x)=-\sin^{-1}x$ equation (3) $\Rightarrow \cos^{-1}(a)=\pi-\cos^{-1}x$ Adding the two, $\sin^{-1}(a)+\cos^{-1}(a)=\pi-(\sin^{-1}x+\cos^{-1}x)$ ... now, by equation (4), the sum in the parentheses equals $\pi/2,$ so $\sin^{-1}(a)+\cos^{-1}(a)=\pi-\pi/2=\pi/2$ ... so, the equation is valid for values in $[-1,0]$ as well.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.